

Baseline Air Quality Monitoring Report (KTN & FLN NDA)

Civil Engineering and Development Department **Project Proponent**

Project Contract No. NDO 14/2018 - Advance and

First Stage Works of Kwu Tung North and Fanling North New Development Areas

Baseline Air Quality Monitoring Report (KTN & FLN NDA)

Project Proponent: Civil Engineering and Development

Department

Project : Contract No. NDO 14/2018 - Advance and

First Stage Works of Kwu Tung North and Fanling North New Development Areas

03	Final	Jimmy Lui, Wingo So	Calvin Leung	Calvin Leuny.	30/11/2020
Issue No.	Status	Prepared and Checked by:	Certified by:	Signature:	Date

Issue No.	Status	Reason for Issue/Reissue	Comments on Content	Date
01	Draft	IEC 1 st comments	Addressed IEC Comments and resubmitted on 23/12/2019.	23/12/2019
02	Draft	IEC 2 nd comments	Addressed IEC Comments and resubmitted on 02/01/2020.	02/01/2020
03	Final	Additional Monitoring	Verified by IEC and resubmitted on 30/11/2020	30/11/2020

Civil Engineering and Development Department

North Development Office

Unit 1501, Level 15, Tower I, Metroplaza

223 Hing Fong Road

Kwai Fong

New Territories

Your reference:

Our reference:

HKCEDD14/50/106909

Date:

26 November 2020

Attention: Mr Ryan Chau

BY EMAIL & POST

(email: hlchau@cedd.gov.hk)

Dear Sirs

Agreement No.: NDO 16/2018

Independent Environmental Checker for

Pre-construction Environmental Monitoring and Audit Works for the Advance and First Stage Works of Kwu Tung North and Fanling North New Development Areas Baseline Air Quality Monitoring Report (KTN & FLN NDA) for Contract No. NDO 14/2018

We refer to emails of 18, 25 and 26 November 2020 attaching a Baseline Noise Monitoring Report (KTN & FLN NDA) prepared by the Environmental Team (ET) of the captioned.

We have no further comment and hereby verify the Baseline Air Quality Monitoring Report in accordance with Clause 3.3 of the Environmental Permit no. EP-466/2013, EP-467/2013/A, EP-468/2013/A, EP-469/2013, EP-470/2013, EP-473/2013/A and EP-475/2013/A.

Should you have any queries, please do not hesitate to contact the undersigned or our Ms Katherine Chu on 2618 2831.

Yours faithfully ANEWR CONSULTING LIMITED

James Choi

Independent Environmental Checker

CPSJ/LYMA/CWKK/lsmt

cc AECOM – Mr Chris Ho (email: chris.ho@aecom.com) Fugro – Mr Calvin Leung (email: c.leung@fugro.com)

ANewR Consulting Limited

Unit 1818, 18/F, Tower A, Regent Centre 63 Wo Yi Hop Road, Kwai Chung, Hong Kong Tel: (852) 2618 2831 Fax: (852) 3007 8648

Email: info@anewr.com Web: www.anewr.com

CC	ONTENT	s	
1.	INTROI	DUCTION	1
2.	AIR QU	ALITY MONITORING	3
2.1	Introduc	ction	3
2.2	2 Monitoring Requirement		
2.3	3 Monitoring Locations		
2.4	Monitor	ing Equipment and Methodology	4
2.5	Baselin	e Monitoring Parameters, Frequency and Duration	7
2.6	Action a	and Limit Levels	7
2.7	Results	and Observations	8
2.8	Revisio	ns for inclusion in the EM&A Manual	9
FIGU	RES		
Figur Figur		Proposed Baseline and Construction Air Quality Monitoring Locations (KTN N Proposed Baseline and Construction Air Quality Monitoring Locations (FLN NI	
APP	ENDICE		
Appe Appe Appe Appe Appe	ndix A ndix B ndix C ndix D ndix E ndix F ndix G	Photos of Air Quality Monitoring Equipment Baseline Air Quality Monitoring Schedule Copies of Calibration Certificates of Air Quality Monitoring Equipment Photos of Air Quality Monitoring Locations Weather and Meterological Conditions during Baseling Monitoring Period Baseline Air Quality Monitoring Data Observation of Air Quality Influencing Factor	

EXECUTIVE SUMMARY

- i. This report presents the baseline monitoring requirements, methodologies and results of baseline measurements in accordance with the requirements in the updated EM&A Manual.
- ii. The baseline monitoring work was conducted from 17 September 2019 to 1 October 2019 & 19 October 2020 to 1 November 2020.
- iii. The average results and Action and Limit Levels (A/L Levels) of 1-hr TSP, 24-hr TSP and noise baseline monitoring at each monitoring locations are summarized in **Table I** and **II** respectively. The Action and Limit Levels for air quality impact monitoring were derived based on the criteria adopted from the updated EM&A Manual.

Table I Summary of 1-hr TSP Baseline Monitoring Results and A/L Levels

Table I St							
Monitoring Station	Description	Average (Range) in µg/m³	AL μg/m³	LL µg/m³			
KTN-	Nursery Classes and	65 (24~192)	292				
DMS1	Kindergartens; Post Offices						
KTN-	Nursery Classes and	61 (2~139)	290				
DMS2	Kindergartens (2 nos); District						
	Elderly Community Centre						
KTN-	Village Resite	63 (6~442)	291				
DMS3							
KTN-	Temporary Structure near	73 (13~187)	297				
DMS4	Fanling Highway (near Pak						
	Shek Au)						
FLN-DMS1	Scattered Village Houses North	82 (61~112)	303	500			
	of Proposed Potential Ecopark						
FLN-DMS2	Residential Buildings, Nursery	55 (20~278)	286				
	Classes and Kindergartens,						
	Neighborhood Elderly						
	Community Centre, Residential						
	Home for the Elderly, Post						
	Office						
FLN-DMS3	House near Tong Hang	78 (69~88)	301				
FLN-DMS4	Village Resite	31 (8~64)	270				
FLN-DMS5	Noble Hill	44 (8~92)	279				

Table II Summary of 24-hr TSP Baseline Monitoring Results and A/L Levels

Monitoring Station	Description	Average (Range) in µg/m³	AL μg/m³	LL µg/m³
KTN- DMS1	Nursery Classes and Kindergartens; Post Offices	88 (35~246)	187	
KTN- DMS2	Nursery Classes and Kindergartens (2 nos); District Elderly Community Centre	109 (15~370)	201	
KTN- DMS3	Village Resite	89 (16~326)	188	
KTN- DMS4	Temporary Structure near Fanling Highway (near Pak Shek Au)	95 (36~291)	192	260
FLN-DMS1	Scattered Village Houses North of Proposed Potential Ecopark	30 (18~51)	150	260
FLN-DMS2	Residential Buildings, Nursery Classes and Kindergartens, Neighborhood Elderly Community Centre, Residential Home for the Elderly, Post Office	70 (34~148)	176	
FLN-DMS3	House near Tong Hang	54 (30~90)	165	
FLN-DMS4	Village Resite	25 (6~64)	146	
FLN-DMS5	Noble Hill	36 (4~92)	153	

Note: KTN-DMS1, KTN-DMS2, KTN-DMS3, KTN-DMS4, FLN-DMS2, FLN-DMS4 and FLN-DMS5 were conducted by using Laser Particle Photometer Monitors due to power supply issue.

1. INTRODUCTION

- 1.1 The Kwu Tung North (KTN) and Fanling North (FLN) New Development Areas (NDAs) are one of the important sources of land and housing supply in the medium and long term. The development of the KTN and FLN NDAs will be implemented in phase for full completion by 2031. The Phase 1 of the NDAs development, comprising the Advance Works and First Stage Works, is targeted to be implemented from the second half of 2019 progressively. The Advance and First Stage Works would include site formation, engineering infrastructure works (including roads, drainage, sewerage, waterworks, landscaping works, pumping stations, and fresh water and flushing water service reservoirs), soil remediation, reprovisioning of North District Temporary Wholesale Market, development of a nature park at Long Valley and implementation of environmental mitigation measures.
- 1.2 The Environmental Impact Assessment (EIA) report for the North East New Territories (NENT) NDAs Study, which covered the Advance Works and First Stage Works of KTN and FLN NDAs, has been submitted to Environmental Protection Department (EPD) in mid-2013. The report was subsequently approved with conditions by EPD on 19 October 2013 under Register No. AEIAR-175/2013.
- 1.3 Contract No. NDO 14/2018 is the works package consists of the Advance and First Stage Works of KTN and FLN NDAs. This Contract is governed by 7 Environmental Permits (EPs) (EP-466/2013, EP-467/2013/A, EP-468/2013/A, EP-469/2013, EP-470/2013, EP-473/2013/A and EP-475/2013/A). EP-466/2013, EP-467/2013/A, EP-468/2013/A, EP-469/2013 and EP-470/2013 belongs to KTN NDAs, while EP-473/2013/A and EP-475/2013/A belongs to FLN NDAs.
- **1.4** The scope of works under the Advance and First Stage Works comprises the following and divides into seven Contracts.
 - a) The Advance Works (PWP item No. 7747CL-2) consist of:
 - i) site formation of land (including soil remediation) in KTN and FLN NDAs for housing, community facilities and engineering infrastructure;
 - ii) construction of roads including the eastern section of Fanling Bypass (FLBP(E)) connecting the FLN NDA to Fanling Highway and other roads with footpaths and cycle tracks, and associated junction/ road improvements;
 - iii) engineering infrastructure works including drainage. Sewerage (including two sewage pumping stations), waterworks (including a fresh water service reservoir and a flushing water service reservoir in the KTN NDA), landscape works and slopeworks;
 - iv) part expansion and upgrading of Shek Wu Hui Sewage Treatment Works (SWHSTW);
 - v) reprovisioning works; and

- vi) implementation of environmental mitigation measures and environmental monitoring and audit (EM&A) programme for the works mentioned in (i) to (v) above
- b) The First Stage Works (PWP item No. 7759CL) consist of:
- i) development of a nature park at Long Valley including provision of a visitor centre and a footbridge spanning across Sheung Yue River for connection between these two facilities;
- ii) reprovisioning of two egretry sites in the FLN NDA and enhancement works to an existing egretry site in the KTN NDA;
- iii) site formation of land for a village resite area and a district police station in the KTN NDA;
- iv) engineering infrastructure works including roads, drainage, sewerage, waterbirds, and landscape works; and
- v) implementation of environmental mitigation measures and environmental monitoring and audit (EM&A) programme for the works mentioned in (i) to (iv) above.
- 1.5 This Baseline Monitoring Report is prepared for <u>"the Advance and First Stage Works of FLN & KTN NDA"</u> based on the Updated EM&A Manual of the Project. This report presents the baseline monitoring requirements, methodologies and results of baseline measurements in accordance with the requirements in the updated EM&A Manual.

2. AIR QUALITY MONITORING

2.1 Introduction

2.1.1 The baseline air quality monitoring involved daily 1-hr and 24-hr total suspended particulate (TSP) air quality monitoring, which the methodology, equipment, frequency, duration, calibration requirement, action and limit level determination are referenced to Section 2 of the Updated EM&A Manual.

2.2 Monitoring Requirement

2.2.1 With reference to Section 2.7 of the Updated EM&A Manual, the baseline TSP air quality monitoring will be conducted to determine the ambient TSP levels at the proposed monitoring locations prior to the commencement of the construction works. At each proposed monitoring station, it will be carried out for a continuous period of at least 14 consecutive days prior to the start of the construction works to obtain daily 24-hour TSP samples. 1-hour sampling shall also be carried out at least 3 times per day during the same period. The general meteorological conditions (e.g. wind speed, direction and precipitation) and notes regarding any significant adjacent dust producing sources should be recorded throughout the baseline monitoring.

2.3 Monitoring Locations

2.3.1 With reference to Section 2.6.1 of the Updated EM&A Manual, four air quality monitoring stations in KTN NDA (KTN-DMS1 to KTN-DMS4) and three air quality monitoring stations in FLN NDA (FLN-DMS1 to FLN-DMS5) are proposed and summarized in Table 2.1. The locations of the proposed air quality monitoring stations are shown in Figure 2.1 and Figure 2.2.

Table 2.1 Summary of Air Quality Monitoring Stations

Monitoring Location No.	ASR ID in EIA	Planned or Existing	Description		
KTN NDA	LIA	LXISTING			
KTN-DMS1	KTN-19	Planned	Nursery Classes and Kindergartens; Post Offices		
KTN-DMS2	KTN-90	Planned	Nursery Classes and Kindergartens (2 nos); District Elderly Community Centre		
KTN-DMS3	KTN-326	Planned	Village Resite		
KTN-DMS4	KTN-E162	Existing	Temporary Structure near Fanling Highway (near Pak Shek Au)		
FLN NDA					
FLN-DMS1	FLN-62	Existing	Scattered Village Houses North of Proposed Potential Ecopark		
FLN-DMS2	FLN-243	Planned	Residential Buildings, Nursery Classes and Kindergartens, Neighborhood Elderly Community Centre, Residential Home for the Elderly, Post Office		
FLN-DMS3	FLN-E143	Existing	House near Tong Hang		
FLN-DMS4	FLN-35	Planned	Village Resite		
FLN-DMS5	FLN-E124	Existing	Noble Hill		

- 2.3.2 ET delivered the power supply request letter twice to the property owners or occupiers nearby the air quality monitoring locations, however no response was received from the property owners or occupiers at KTN-DMS1, KTN-DMS2, KTN-DMS3 and FLN-DMS2. Therefore, these locations will be considered as no power supply available for High Volume Samplers (HVS).
- 2.3.3 As power supply for the HVS is not available at / in the vicinity of five air quality monitoring stations including KTN-DMS1, KTN-DMS2, KTN-DMS3, FLN-DMS2, FLN-DMS4, FLN-DMS5 and KTN-DMS4 was rejected by powner owner, portable Laser Particle Photometer Monitors are proposed for conducting 24-hour TSP monitoring instead of High Volume samplers (HVS).
- 2.3.4 Previous example on similar CEDD project that approved by EPD for using portable Laser Particle Photometer Monitors to conduct 24-hour TSP monitoring can be referenced to the Project "Widening and Reconstruction of Tai Po Road (Sha Tin Section)" (EP-463/2013/B). The Project link is attached below:

https://www.epd.gov.hk/eia/english/alpha/aspd 219.html

2.4 Monitoring Equipment and Methodology

High Volume Samplers (HVS)

2.4.1 High volume samplers (HVS) completed with appropriate sampling inlets are employed for 24-hour TSP monitoring at FLN-DMS1 and FLN-DMS3.

Operating / Analytical Procedures

- **2.4.2** Operating / analytical procedures for the operation of HVS were as follow:
 - A horizontal platform was provided with appropriate support to secure the samplers against gusty wind.
 - No two samplers were placed less than 2 metres apart.
 - The distance between the sampler and an obstacle, such as buildings, was at least twice the height that obstacle protrudes above the sampler.
 - A minimum of 2 metres away from any supporting structure, measured horizontally was required.
 - A minimum of 2 metres away from walls, parapets and penthouses was required for rooftop samples.
 - No furnaces or incineration flues were nearby.
 - Airflow around the sampler was unrestricted.
 - The sampler was more than 20 metres from the drip line.
 - Any wire fence and gate to protect the sampler, should not cause any obstruction during monitoring.
- **2.4.3** Prior to the commencement of the dust sampling, the flow rate of the high volume sampler was properly set (between 1.1 m³/min. and 1.4 m³/min.) in accordance with

the manufacturer's instruction to within the range recommended in USEPA Standard Title 40, CFR Part 50.

- **2.4.4** The power supply was checked to ensure the sampler worked properly.
- **2.4.5** During sampling, the sampler was operated for 5 minutes to establish thermal equilibrium before placing any filter media at the designated air monitoring station.
- 2.4.6 The filter holding frame was then removed by loosening the four nuts and carefully a weighted and conditioned filter was centered with the stamped number upwards, on a supporting screen.
- 2.4.7 The filter was aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter. Then the filter holding frame was tightened to the filter holder with swing bolts. The applied pressure should be sufficient to avoid air leakage at the edges.
- **2.4.8** The timer was then programmed. Information was recorded on the record sheet, which included the starting time, the weather condition and the filter number (the initial weight of the filter paper can be found out by using the filter number).
- **2.4.9** After sampling, the filter was removed and sent to the laboratory for weighting. The elapsed time was also recorded.
- **2.4.10** Before weighing, all filters were equilibrated in a conditioning environment for 24 hours. The conditioning environment temperature should be between 25°C and 30°C and not vary by more than ± 3 °C; the relative humidity (RH) should be < 50% and not vary by more than ± 5 %. A convenient working RH is 40%.

Maintenance / Calibration

- **2.4.11** The following maintenance / calibration was required for the HVS:
 - The high volume motors and their accessories were properly maintained. Appropriate maintenance such as routine motor brushes replacement and electrical wiring checking were made to ensure that the equipment and necessary power supply were in good working condition.
 - High volume samplers were calibrated at quarterly intervals using Tisch TE-5025A Calibration Kit throughout all stages of the air quality monitoring.

Direct Reading Dust Meter

2.4.12 Portable Laser Particle Photometer Monitors complete with appropriate sampling inlets are employed for 1-hour TSP monitoring at all seven air quality monitoring stations and 24-hour TSP monitoring at KTN-DMS1, KTN-DMS2, KTN-DMS3, KTN-DMS4, FLN-DMS2, FLN-DMS4 & FLN-DMS5. K-factor will be used to describe the correlation between the measurement of portable Laser Particle Photometer Monitors and HVS.

Measuring Procedures

The measuring procedures of the Portable Laser Particle Photometer Monitors are in accordance with the Manufacturer's instruction Manual as follows:

- Pull up the air sampling inlet cover
- Change the Mode 0 to BG with once
- Push Start/Stop switch once
- Turn the knob to SENSI.ADJ and press it
- Push Start/Stop switch once
- Return the knob to the position MEASURE slowly
- Push the timer set switch to set measuring time
- Remove the cap and make a measurement

Maintenance and Calibration

- **2.4.13** Calibration of air quality monitoring equipment shall be conducted upon installation and thereafter at bi-monthly intervals. The transfer standard shall be traceable to the internationally recognised primary standard and be calibrated annually. Current calibration certificates are presented in **Appendix C**.
- 2.4.14 The equipment used for air quality monitoring is summarized in Table 2.2.

Table 2.2 Air Quality Monitoring Equipment

Manufacturer/ Brand	Model	Equipment	Serial Number
Sibata	LD-5R	Sibata Portable TSP Monitors	620407
	LD-5R	Sibata Portable TSP Monitors	761105
	LD-5R	Sibata Portable TSP Monitors	761106
	LD-5R	Sibata Portable TSP Monitors	882146
	LD-5R	Sibata Portable TSP Monitors	882147
	LD-5R	Sibata Portable TSP Monitors	882149
	LD-5R	Sibata Portable TSP Monitors	892185
	LD-5R	Sibata Portable TSP Monitors	892186
	LD-5R	Sibata Portable TSP Monitors	892187
TISCH	TE-5170	High Volumn Sampler	4037
	TE-5170	High Volumn Sampler	3482

2.5 Baseline Monitoring Parameters, Frequency and Duration

2.5.1 Table 2.3 summarizes the monitoring parameters, duration and frequency of baseline air quality monitoring.

Table 2.3 Baseline Monitoring Parameters, Duration and Frequency for

Baseline Air Quality Monitoring

Parameter	Duration	Frequency
1 hour TSP	3 times per day	14 consecutive days
24 hour TSP	24 hour per day	14 consecutive days

2.6 Action and Limit Levels

2.6.1 Action and limit levels for impact air quality monitoring are presented in **Table 2.4**.

Table 2.4 Action Level and Limit Level for Impact Air Quality Monitoring

Parameters	Action	Limit
24-hour TSP Level in μg/m ³	For baseline level ≤ 200 μg/m³, Action level = (baseline level * 1.3 + Limit level)/2; For baseline level > 200 μg/m³ Action level = Limit level	260 μg/m ³
1-hour TSP Level in µg /m ³	For baseline level ≤ 384 μg/m³, Action level = (baseline level * 1.3 + Limit level)/2; For baseline level > 384 μg/m³, Action level = Limit level	500 μg/m ³

2.7 Results and Observations

- 2.7.1 The baseline air quality monitoring was conducted from 17 September 2019 to 30 September 2019 and FLN-DMS1 delay one day (from 18 September 2019 to 1 October 2019) due to power supply problem. Baseline air quality monitoring of FLN-DMS4 & FLN-DMS5 were conducted from 19 October 2020 to 1 November 2020. The detail monitoring schedule is shown in Appendix B.
- **2.7.2** The monitoring data of 1-hr TSP and 24-hr TSP are summarized in **Table 2.5** and **2.6** respectively. Detailed monitoring data are presented in **Appendix E**.

Table 2.5 Summary of 1-hr TSP Baseline Monitoring Results

Parameter	Monitoring Station	Description	Min (µg/ m³)	Max (µg/ m³)	Average (µg/m³)
	KTN-DMS1	Nursery Classes and Kindergartens; Post Offices	24	192	65
	KTN-DMS2	Nursery Classes and Kindergartens (2 nos); District Elderly Community Centre	2	139	61
	KTN-DMS3	Village Resite	6	442	63
4 hr TCD	KTN-DMS4	Temporary Structure near Fanling Highway (near Pak Shek Au)	13	187	73
1-hr TSP in µg/m³	FLN-DMS1	Scattered Village Houses North of Proposed Potential Ecopark	61	112	82
	FLN-DMS2	Residential Buildings, Nursery Classes and Kindergartens, Neighborhood Elderly Community Centre, Residential Home for the Elderly, Post Office	20	278	55
	FLN-DMS3	House near Tong Hang	69	88	78
	FLN-DMS4	Village Resite	8	64	31
	FLN-DMS5	Noble Hill	8	92	44

Table 2.6 Summary of 24-hr TSP Baseline Monitoring Results

Parameter	Monitoring Station	Description	Min (μg/ m³)	Max (µg/ m³)	Average (μg/m³)
	KTN-DMS1	Nursery Classes and Kindergartens; Post Offices	35	246	88
	KTN-DMS2	Nursery Classes and Kindergartens (2 nos); District Elderly Community Centre	15	370	109
24-hr TSP in μg/m³	KTN-DMS3	Village Resite	16	326	89
	KTN-DMS4	Temporary Structure near Fanling Highway (near Pak Shek Au)	36	291	95
	FLN-DMS1	Scattered Village Houses North of Proposed Potential Ecopark	18	51	30
	FLN-DMS2	Residential Buildings, Nursery Classes and Kindergartens, Neighborhood Elderly Community Centre, Residential Home for the Elderly, Post Office	34	148	70

FLN-[DMS3 House nea	r Tong Hang	30	90	54
FLN-	DMS4 Village Res	site	6	64	25
FLN-[DMS5 Noble Hill		4	92	36

2.7.3 At KTN-DMS1, KTN-DMS2, KTN-DMS3, FLN-DMS1, FLN-DMS2, FLN-DMS3, FLN-DMS4 & FLN-DMS5, no air quality influencing factor was observed. Except at KTN-DMS4, road construction works from other project was observed from 17 September 2019 to 30 September 2019 during the baseline monitoring period. No any project related construction activity in the vicinity of the monitoring stations during the baseline monitoring are noted and recorded. Observation of air quality influencing factor is shown in **Appendix G**.

Table 2.7 Summary of 1-hr TSP Baseline Monitoring Results and A/L Levels

Monitoring Station	Description	Average (Range) in µg/m³	AL μg/m³	LL µg/m³
KTN-DMS1	Nursery Classes and Kindergartens; Post Offices	65 (24~192)	292	μу/…
KTN-DMS2	Nursery Classes and Kindergartens (2 nos); District Elderly Community Centre	61 (2~139)	290	
KTN-DMS3	Village Resite	63 (6~442)	291	
KTN-DMS4	Temporary Structure near Fanling Highway (near Pak Shek Au)	73 (13~187)	297	
FLN-DMS1	Scattered Village Houses North of Proposed Potential Ecopark	82 (61~112)	303	500
FLN-DMS2	Residential Buildings, Nursery Classes and Kindergartens, Neighborhood Elderly Community Centre, Residential Home for the Elderly, Post Office	55 (20~278)	286	
FLN-DMS3	House near Tong Hang	78 (69~88)	301	
FLN-DMS4	Village Resite	31 (8~64)	270	
FLN-DMS5	Noble Hill	44 (8~92)	279	

Table 2.8 Summary of 24-hr TSP Baseline Monitoring Results and A/L Levels

Monitoring	Description	Average (Range) in	AL	LL
Station	Description	μg/m³	μg/m³	μg/m³
KTN-DMS1	Nursery Classes and Kindergartens; Post Offices	88 (35~246)	187	
KTN-DMS2	Nursery Classes and Kindergartens (2 nos); District Elderly Community Centre	109 (15~370)	201	
KTN-DMS3	Village Resite	89 (16~326)	188	
KTN-DMS4	Temporary Structure near Fanling Highway (near Pak Shek Au)	95 (36~291)	192	
FLN-DMS1	Scattered Village Houses North of Proposed Potential Ecopark	30 (18~51)	150	260
FLN-DMS2	Residential Buildings, Nursery Classes and Kindergartens, Neighborhood Elderly Community Centre, Residential Home for the Elderly, Post Office	70 (34~148)	176	
FLN-DMS3	House near Tong Hang	54 (30~90)	165	
FLN-DMS4	Village Resite	25 (6~64)	146	
FLN-DMS5	Noble Hill	36 (4~92)	153	

Note: KTN-DMS1, KTN-DMS2, KTN-DMS3, KTN-DMS4, FLN-DMS2, FLN-DMS4 and FLN-DMS5 were conducted by using Laser Particle Photometer Monitors due to power supply issue.

2.8 Revisions for inclusion in the EM&A Manual

2.8.1 No revision is required for the updated EM&A Manual.

Figure 2.1
Baseline and Construction Air Quality Monitoring Locations (KTN NDA)

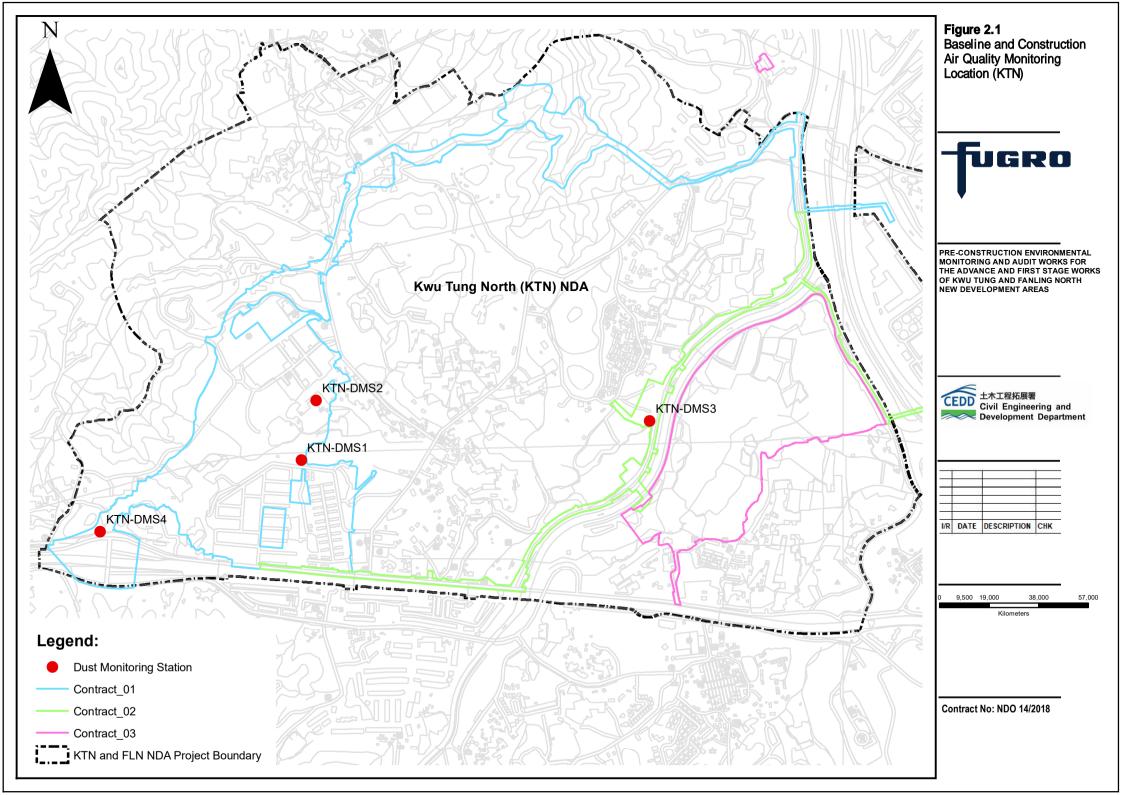
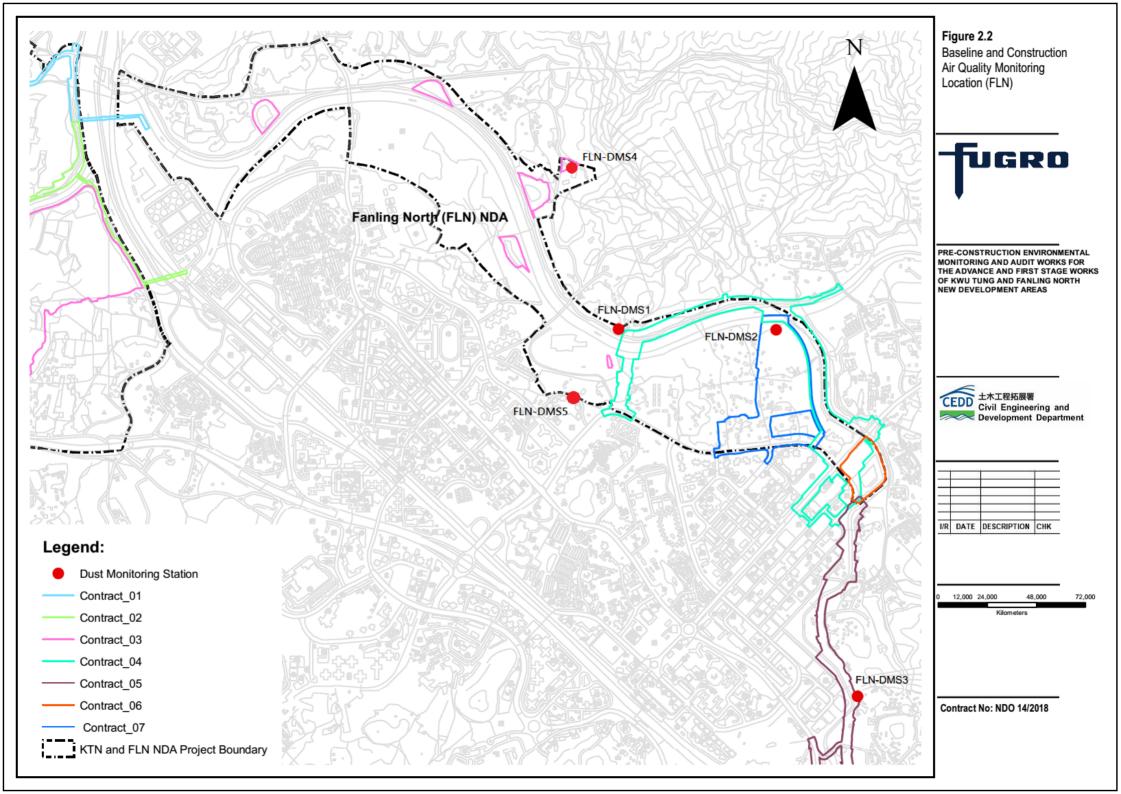
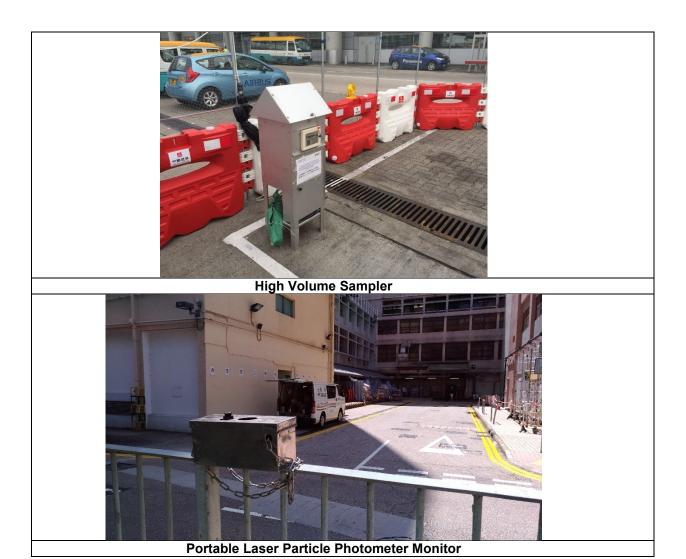



Figure 2.2
Baseline and Construction Air Quality Monitoring Locations (FLN NDA)



APPENDICES

A. PHOTOS OF AIR QUALITY MONITORING EQUIPMENT

B. BASELINE AIR QUALITY MONITORING SCHEDULE

Project: Contract No. NDO 14/2018 - Advance and First Stage Works of Kwu Tung North and Fanling North New Development Areas

Baseline Monitoring Schedule (Air_KLN&FLN)

	itoring Schedule (1871	T1	F.:	0-1
Sun	Mon	Tue	Wed	Thur	Fri	Sat
1 September	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17 KTN-DMS2 KTN-DMS3 KTN-DMS4 FLN-DMS1 FLN-DMS2 FLN-DMS3	18 KTN-DMS1 KTN-DMS2 KTN-DMS3 KTN-DMS4 FLN-DMS1 FLN-DMS2 FLN-DMS3	19 KTN-DMS1 KTN-DMS2 KTN-DMS3 KTN-DMS4 FLN-DMS1 FLN-DMS2 FLN-DMS3	20 KTN-DMS1 KTN-DMS2 KTN-DMS3 KTN-DMS4 FLN-DMS1 FLN-DMS2 FLN-DMS3	21 KTN-DMS1 KTN-DMS2 KTN-DMS3 KTN-DMS4 FLN-DMS1 FLN-DMS2 FLN-DMS3
Z2 KTN-DMS1 KTN-DMS2 KTN-DMS3 KTN-DMS4 FLN-DMS1 FLN-DMS2 FLN-DMS3 Z9 KTN-DMS1 KTN-DMS2	23 KTN-DMS1 KTN-DMS2 KTN-DMS3 KTN-DMS4 FLN-DMS1 FLN-DMS2 FLN-DMS3 30 KTN-DMS1 KTN-DMS2	24 KTN-DMS1 KTN-DMS2 KTN-DMS3 KTN-DMS4 FLN-DMS1 FLN-DMS2 FLN-DMS3 1 October KTN-DMS1	25 KTN-DMS1 KTN-DMS2 KTN-DMS3 KTN-DMS4 FLN-DMS1 FLN-DMS2 FLN-DMS2 FLN-DMS3	26 KTN-DMS1 KTN-DMS2 KTN-DMS3 KTN-DMS4 FLN-DMS1 FLN-DMS2 FLN-DMS2 3	27 KTN-DMS1 KTN-DMS2 KTN-DMS3 KTN-DMS4 FLN-DMS1 FLN-DMS2 FLN-DMS3 4	28 KTN-DMS1 KTN-DMS2 KTN-DMS3 KTN-DMS4 FLN-DMS1 FLN-DMS2 FLN-DMS3
KTN-DMS3 KTN-DMS4 FLN-DMS1 FLN-DMS2 FLN-DMS3	KTN-DMS3 KTN-DMS4 FLN-DMS1 FLN-DMS2 FLN-DMS3					

Notes:

^{1.} Monitoring Locations: KTN-DMS1 — Nursery Classes and Kindergartens, Post Office (Planned); KTN-DMS2 ¬— Nursery Classes and Kindergartens (2 nos), District Elderly Community Centre (Planned); KTN-DMS3 ¬— Village Resite (Planned); KTN-DMS4 — Temporary Structure near Fanling Highway (near Pak Shek Au); FLN-DMS1 — Scattered Village Houses North of Proposed Potential Ecopark; FLN-DMS2 — Residential Buildings, Nursery Classes and Kindergartens, Neighborhood Elderly Community Centre, Residential Home for the Elderly, Post Office (Planned); FLN-DMS3 — House near Tong Hang; FLN-DMS4 — Village Resite; FLN-DMS5 — Noble Hill.

Project: Contract No. NDO 14/2018 - Advance and First Stage Works of Kwu Tung North and Fanling North New Development Areas

Baseline Monitoring Schedule (Air_FLN)

Sun	Mon	Tue	Wed	Thur	Fri	Sat
				1 October	2	3
4	5	6	7	8	9	10
11	12	13	14	15	16	17
18	19 FLN-DMS4 FLN-DMS5	20 FLN-DMS4 FLN-DMS5	21 FLN-DMS4 FLN-DMS5	22 FLN-DMS4 FLN-DMS5	23 FLN-DMS4 FLN-DMS5	24 FLN-DMS4 FLN-DMS5
25 FLN-DMS4 FLN-DMS5	26 FLN-DMS4 FLN-DMS5	27 FLN-DMS4 FLN-DMS5	28 FLN-DMS4 FLN-DMS5	29 FLN-DMS4 FLN-DMS5	30 FLN-DMS4 FLN-DMS5	31 FLN-DMS4 FLN-DMS5
1 November FLN-DMS4 FLN-DMS5	2	3	4	5	6	7

Notes:

1. Monitoring Locations: KTN-DMS1 — Nursery Classes and Kindergartens, Post Office (Planned); KTN-DMS2 — Nursery Classes and Kindergartens (2 nos), District Elderly Community Centre (Planned); KTN-DMS3 — Village Resite (Planned); KTN-DMS4 — Temporary Structure near Fanling Highway (near Pak Shek Au); FLN-DMS1 — Scattered Village Houses North of Proposed Potential Ecopark; FLN-DMS2 — Residential Buildings, Nursery Classes and Kindergartens, Neighborhood Elderly Community Centre, Residential Home for the Elderly, Post Office (Planned); FLN-DMS3 — House near Tong Hang; FLN-DMS4 — Village Resite; FLN-DMS5 — Noble Hill.

C. COPIES OF CALIBRATION CERTIFICATE OF AIR QUALITY MONITORING EQUIPMENT

Fugro Development Centre. 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 : +852 2450 6138 Fax E-mail: matlab@fugro.com Website: www.fugro.com

Report no.: 940891CA195965(4)

Page 1 of 1

CALIBRATION CERTIFICATE OF DUST METER

: Fugro Technical Services Limited

Project : Calibration Services

Client Supplied Information

Details of Unit Under Test, UUT

Description

: Laser dust monitor

Manufacturer

: SIBATA

Model No.

: LD-5R

Serial No.

: 620407

Specification Limit

: NA

Next Calibration Date : 11-Jul-2020

Laboratory Information

Description

: Reference balance

Equipment ID.

: R-053-12

Date of Calibration

: 12-Jul-2019

Ambient Temperature : 22 °C

Calibration Location: Calibration Laboratory of FTS

Method Used

: By direct comparison the weight of dust particle trapped in a filter paper using high volume sampler (TSP method) for a certain period, with the reading of the UUT. They

should be placed at the same location and powered on and off at the same time.

Calibration Results:

Reference concentration (mg/m³)	Total count for 1 hour	CPM (Count per minute)
0.0678	2058	34.30
0.0424	1276	21.27
0.0364	842	14.03

Remarks:

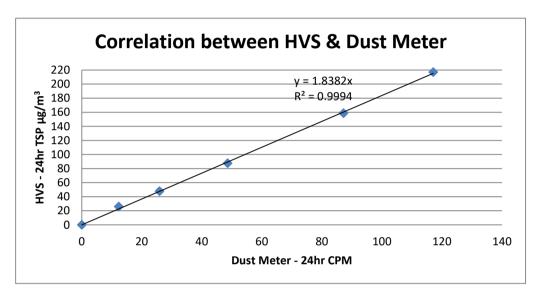
1. The equipment being used in this calibration is traceable to recognized National Standards.

2. The interpolation equation: Concentration $(mg/m^3) = K \times [UUT reading (CPM)]$, where K = 0.002106

3. Correlation coefficient (r):

Cung Date: 19-7-2019 Certified by: CT. Loung Date: 20.7-2019 Checked by :___

CA-R-297 (22/07/2009)


** End of Report *

Correlation between HVS & Dust Meter

Model: Sibata LD-5R
Serial No: 620407
Date of Calibration: 25 Febraury 2019
Date of Next Calibration: 24 Febrauary 2020

Calibraion Record

HVS - 24hr TSP μg/m ³	25.99	47.66	87.57	158.63	216.9
Dust Meter - 24hr CPM	12.33	25.9	48.58	87.23	117.11

K factor = 1.8282

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun. NT Hong Kong

Report no.: 940891CA200109(14)

Page 1 of 1

CALIBRATION CERTIFICATE OF DUST METER

Client : Fugro Technical Services Limited

Project : Calibration Services

Client Supplied Information

Details of Unit Under Test, UUT

Description

: Laser dust monitor

Manufacturer

: SIBATA

Model No.

: LD-5R

Serial No.

: 761105

Specification Limit

: NA

Next Calibration Date : 05-Dec-2020

Laboratory Information

Description

: TSP high volume air sampler

Serial No.

: 4350

Date of Calibration

: 06-Dec-2019

Ambient Temperature : 26 °C

Calibration Location: Ma Wan A1 Site Boundary

Method Used

: By direct comparison the weight of dust particle trapped in a filter paper using high

volume sampler (TSP method) for a certain period, with the reading of the UUT. They should be placed at the same location and powered on and off at the same time.

Calibration Results:

Reference concentration (mg/m³)	Total count for 1 hour	CPM (Count per minute)
0.0393	1260	21.00
0.0681	1519	25.32
0.0504	1327	22.12

Remarks:

1. The equipment being used in this calibration is traceable to recognized National Standards.

2. The interpolation equation: Concentration $(mg/m^3) = K \times [UUT reading (CPM)], where K = 0.002306$

3. Correlation coefficient (r):

0.9906

Date: 10-2-2020 Certified by: (L. Jourg Date: 10-2-2020 Checked by :___ CA-R-297 (22/07/2009) Leung Kwok Tai (Assistant Manager)

** End of Report **

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Correlation between HVS & Dust Meter

Laser dust monitor Information

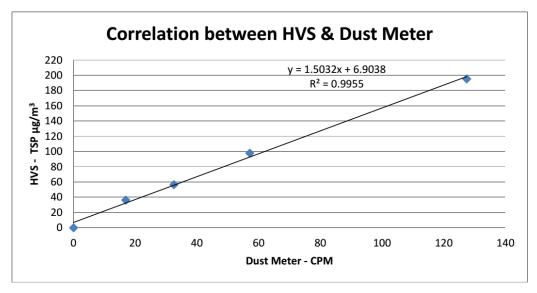
Model: Sibata LD-5R Serial No: 761105

Date of Calibration: 21 February 2020 Date of Next Calibration: 20 February 2021

High Volume Sampler Information

Model: Tisch TE-5170

Serial No: 4606 Ambient Temperature: 18.9 °C


Method Used: By direct comparison the weight of dust particle trapped in

a filter paper using HVS (TSP method) for a certain period, with the reading of the Unit uner test. They should be paced at the same location and powered on and off at the

same time.

Calibration Results:

Calibration Results:	36.4	56.5	98	195.4
Dust Meter - CPM	16.9	32.5	57.1	127.4

Remarks:

- 1. K-Factor = 1.5032
- 2. Correlation coefficient (r) = 0.9955

Fugro Development Centre. 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

: +852 2450 8233 Fax +852 2450 6138 E-mail: matlab@fugro.com Website: www.fugro.com

Report no.: 940891CA181789(4)

Page 1 of 1

CALIBRATION CERTIFICATE OF DUST METER

Fugro Technical Services Limited

Project : Calibration Services

Client Supplied Information

Details of Unit Under Test, UUT

Description

: Laser dust monitor

Manufacturer

: SIBATA

Model No.

: LD-5R

Serial No.

: 761106

Specification Limit

: NA

Next Calibration Date

: 04-Oct-2019

Laboratory Information

Description

: Reference balance

Equipment ID.

: R-039-12

Date of Calibration

: 05-Oct-2018

Ambient Temperature :

Calibration Location : Calibration Laboratory of FTS

Method Used

: By direct comparison the weight of dust particle trapped in a filter paper using high volume sampler (TSP method) for a certain period, with the reading of the UUT. They

should be placed at the same location and powered on and off at the same time.

Calibration Results:

Reference concentration (mg/m³)	Total count for 1 hour	CPM (Count per minute)
0.1165	3573	59.55
0.1232	3694	61.57
0.1489	3992	66.53

Remarks:

1. The equipment being used in this calibration is traceable to recognized National Standards.

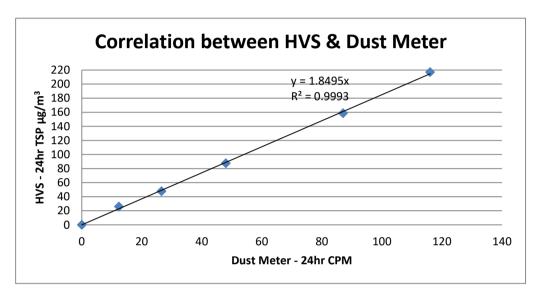
2. The interpolation equation: Concentration (mg/m³) = K x [UUT reading (CPM)], where K = 0.002071

3. Correlation coefficient (r):

0.9962

CA-R-297 (22/07/2009)

15-11-2018 Certified by: 15-11-2018


** End of Report **

Correlation between HVS & Dust Meter

Model: Sibata LD-5R
Serial No: 761106
Date of Calibration: 25 Febraury 2019
Date of Next Calibration: 24 Febrauary 2020

Calibraion Record

HVS - 24hr TSP μg/m ³	25.99	47.66	87.57	158.63	216.9
Dust Meter - 24hr CPM	12.37	26.56	47.99	87.03	116.06

K factor = 1.8495

Fugro Development Centre. 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel +852 2450 8233 Fax : +852 2450 6138 E-mail: matlab@fugro.com Website: www.fugro.com

Report no.: 940891CA181731

Page 1 of 1

CALIBRATION CERTIFICATE OF DUST METER

Fugro Technical Services Limited

Project : Calibration Services

Client Supplied Information

Details of Unit Under Test, UUT

Description

: Laser dust monitor

Manufacturer

: SIBATA

Model No.

: LD-5R

Serial No.

: 882146

Specification Limit

: NA

Next Calibration Date

: 02-Oct-2019

Laboratory Information

Description

: Reference balance

Equipment ID.

: R-039-12

Date of Calibration

: 03-Oct-2018

Ambient Temperature : 21 °C

Calibration Location : Calibration Laboratory of FTS

Method Used

: By direct comparison the weight of dust particle trapped in a filter paper using high volume sampler (TSP method) for a certain period, with the reading of the UUT. They

should be placed at the same location and powered on and off at the same time.

Calibration Results:

Reference concentration (mg/m³)	Total count for 1 hour	CPM (Count per minute)
0.0912	2918	48.63
0.0971	3050	50.83
0.0853	2721	45.35

Remarks:

1. The equipment being used in this calibration is traceable to recognized National Standards.

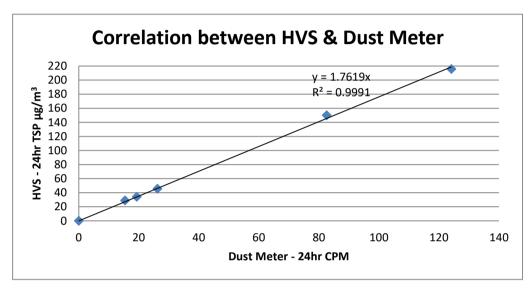
2. The interpolation equation : Concentration $(mg/m^3) = K \times [UUT \text{ reading (CPM)}], \text{ where } K = 0.001889$

3. Correlation coefficient (r):

0.9936

Checked by: CA-R-297 (22/07/2009)

5- 11-2018 Certified by: C. J. Lewis Date: 6-11-2018 Date:


** End of Report **

Correlation between HVS & Dust Meter

Model: Sibata LD-5R
Serial No: 882146
Date of Calibration: 25 Febraury 2019
Date of Next Calibration: 24 Febrauary 2020

Calibraion Record

HVS - 24hr TSP μg/m ³	28.99	34.06	45.57	149.88	215.67
Dust Meter - 24hr CPM	15.4	19.3	26.2	82.59	124.12

K factor = 1.762

Fugro Development Centre. 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail: matlab@fugro.com Website: www.fugro.com

Report no.: 940891CA181731(4)

Page 1 of 1

CALIBRATION CERTIFICATE OF DUST METER

Client : Fugro Technical Services Limited

Project : Calibration Services

Client Supplied Information

Details of Unit Under Test, UUT

Description

: Laser dust monitor

Manufacturer

: SIBATA

Model No.

: LD-5R

Serial No.

: 882147

Specification Limit

: NA

Next Calibration Date

: 02-Oct-2019

Laboratory Information

Description

: Reference balance

Equipment ID.

: R-039-12

Date of Calibration

: 03-Oct-2018

Ambient Temperature : 21 °C

Calibration Location : Calibration Laboratory of FTS

Method Used

: By direct comparison the weight of dust particle trapped in a filter paper using high

volume sampler (TSP method) for a certain period, with the reading of the UUT. They

should be placed at the same location and powered on and off at the same time.

Calibration Results:

Reference concentration (mg/m³)	Total count for 1 hour	CPM (Count per minute)
0.0912	2874	47.90
0.0971	3057	50.95
0.0853	2580	43.00

Remarks:

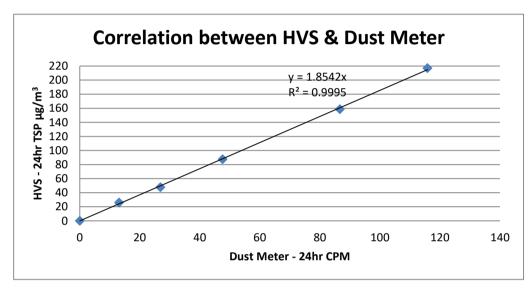
1. The equipment being used in this calibration is traceable to recognized National Standards.

2. The interpolation equation : Concentration $(mg/m^3) = K \times [UUT reading (CPM)]$, where K = 0.001929

3. Correlation coefficient (r):

Checked by: CA-R-297 (22/07/2009)

11-2018 Certified by:


** End of Report **

Correlation between HVS & Dust Meter

Model: Sibata LD-5R
Serial No: 882147
Date of Calibration: 25 Febraury 2019
Date of Next Calibration: 24 Febrauary 2020

Calibraion Record

HVS - 24hr TSP μg/m ³	25.99	47.66	87.57	158.63	216.9
Dust Meter - 24hr CPM	13.08	26.88	47.56	86.64	115.86

K factor = 1.8542

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Report no.: 940891CA200109(12)

Page 1 of 1

CALIBRATION CERTIFICATE OF DUST METER

Client : Fugro Technical Services Limited

Project : Calibration Services

Client Supplied Information

Details of Unit Under Test, UUT

Description

: Laser dust monitor

Manufacturer

: SIBATA

Model No.

: LD-5R

Serial No.

: 882149

Specification Limit

: NA

Next Calibration Date : 05-Dec-2020

Laboratory Information

Description

: TSP high volume air sampler

Serial No.

: 4350

Date of Calibration

: 06-Dec-2019

Ambient Temperature : 26 °C

Calibration Location : Ma Wan A1 Site Boundary

Method Used

: By direct comparison the weight of dust particle trapped in a filter paper using high

volume sampler (TSP method) for a certain period, with the reading of the UUT. They should be placed at the same location and powered on and off at the same time.

Calibration Results:

oundration itedates .		
Reference concentration (mg/m³)	Total count for 1 hour	CPM (Count per minute)
0.0393	1511	25.18
0.0681	1799	29.98
0.0504	1590	26.50

Remarks:

1. The equipment being used in this calibration is traceable to recognized National Standards.

2. The interpolation equation: Concentration $(mg/m^3) = K \times [UUT reading (CPM)]$, where K = 0.001932

3. Correlation coefficient (r):

0.9927

Date: 10-2-2020 Certified by: [T. Joung Date: 10-2-2020 Checked by: CA-R-297 (22/07/2009) Leung Kwok Tai (Assistant Manager)

** End of Report **

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Correlation between HVS & Dust Meter

Laser dust monitor Information

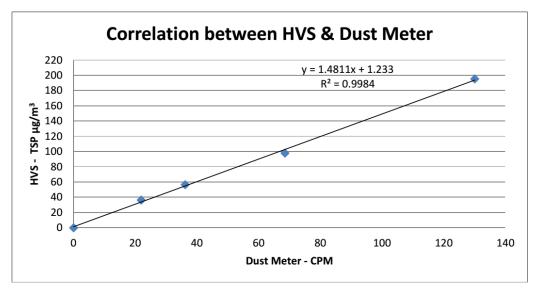
Model: Sibata LD-5R Serial No: 882149

Date of Calibration: 21 February 2020 Date of Next Calibration: 20 February 2021

High Volume Sampler Information

Model: Tisch TE-5170

Serial No: 4606 Ambient Temperature: 18.9 °C


Method Used: By direct comparison the weight of dust particle trapped in

a filter paper using HVS (TSP method) for a certain period, with the reading of the Unit uner test. They should be paced at the same location and powered on and off at the

same time.

Calibration Results:

Calibration Results:	36.4	56.5	98	195.4
Dust Meter - CPM	21.9	36.2	68.5	130.0

Remarks:

- 1. K-Factor = 1.4811
- 2. Correlation coefficient (r) = 0.9984

Fugro Development Centre. 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel Fax : +852 2450 6138 E-mail: matlab@fugro.com Website: www.fugro.com

Report no.: 940891CA181902

Page 1 of 1

CALIBRATION CERTIFICATE OF DUST METER

Client : Fugro Technical Services Limited

Project : Calibration Services

Client Supplied Information

Details of Unit Under Test, UUT

Description

: Laser dust monitor

Manufacturer

: SIBATA

Model No

: LD-5R

Serial No.

: 892185

Specification Limit

: NA

Next Calibration Date : 30-Oct-2019

Laboratory Information

Description

: Reference balance

Equipment ID.

: R-039-12

Date of Calibration

: 31-Oct-2018

Ambient Temperature : 21 °C

Calibration Location : Calibration Laboratory of FTS

Method Used

: By direct comparison the weight of dust particle trapped in a filter paper using high

volume sampler (TSP method) for a certain period, with the reading of the UUT. They

should be placed at the same location and powered on and off at the same time.

Calibration Results:

Reference concentration (mg/m³)	Total count for 1 hour	CPM (Count per minute)
0.1524	4423	73.72
0.1587	4618	76.97
0.1685	4828	80.47

Remarks:

1. The equipment being used in this calibration is traceable to recognized National Standards.

2. The interpolation equation : Concentration $(mg/m^3) = K \times [UUT reading (CPM)], where K = 0.002075$

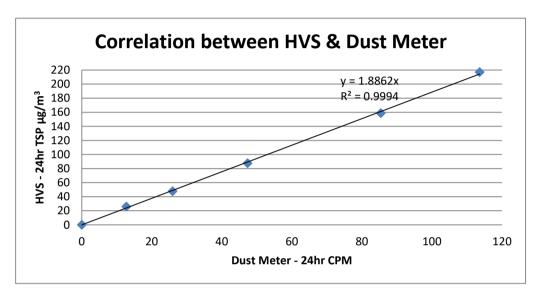
3. Correlation coefficient (r):

Checked by: CA-R-297 (22/07/2009)

12-2018 Certified by :

July Date: 6/2-2015

Leung Kwok Tai (Assistant Manager)


** End of Report **

Correlation between HVS & Dust Meter

Model: Sibata LD-5R
Serial No: 892185
Date of Calibration: 25 Febraury 2019
Date of Next Calibration: 24 Febrauary 2020

Calibraion Record

HVS - 24hr TSP μg/m ³	25.99	47.66	87.57	158.63	216.9
Dust Meter - 24hr CPM	12.73	25.94	47.34	85.4	113.6

K factor = 1.8862

Fugro Development Centre, 5 Lok Yi Street, Tai Lam. Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail: matlab@fugro.com Website: www.fugro.com

Report no.: 940891CA181902(1)

Page 1 of 1

CALIBRATION CERTIFICATE OF DUST METER

: Fugro Technical Services Limited

Project : Calibration Services

Client Supplied Information

Details of Unit Under Test, UUT

Description

: Laser dust monitor

Manufacturer

: SIBATA

Model No.

: LD-5R

Serial No.

: 892186

Specification Limit

: NA

Next Calibration Date : 30-Oct-2019

Laboratory Information

Description

: Reference balance

Equipment ID.

: R-039-12

Date of Calibration

: 31-Oct-2018

Ambient Temperature : 21 °C

Calibration Location : Calibration Laboratory of FTS

Method Used

: By direct comparison the weight of dust particle trapped in a filter paper using high

volume sampler (TSP method) for a certain period, with the reading of the UUT. They

should be placed at the same location and powered on and off at the same time.

Calibration Results:

Reference concentration (mg/m³)	Total count for 1 hour	CPM (Count per minute)
0.1524	4032	67.20
0.1587	4269	71.15
0.1685	4816	80.27

Remarks:

1. The equipment being used in this calibration is traceable to recognized National Standards.

2. The interpolation equation : Concentration $(mg/m^3) = K \times [UUT reading (CPM)]$, where K = 0.002194

3. Correlation coefficient (r):

Checked by :	Date : 6-12-2018	_ Certified by : <i>K.T. Zuun</i>	; _ Date :_	6-12-2018
5711 257 (22/07/2009)		Leung Kwok Tai (Assistan	Manager)	

** End of Report **

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website: www.fugro.com

Report no.: 940891CA181902(2)

Page 1 of 1

CALIBRATION CERTIFICATE OF DUST METER

: Fugro Technical Services Limited

Project : Calibration Services

Client Supplied Information

Details of Unit Under Test, UUT

Description

: Laser dust monitor

Manufacturer

: SIBATA

Model No.

: LD-5R

Serial No.

: 892187

Specification Limit

: NA

Next Calibration Date

: 30-Oct-2019

Laboratory Information

Description

: Reference balance

Equipment ID.

: R-039-12

Date of Calibration

: 31-Oct-2018

Ambient Temperature : 21 °C

Calibration Location : Calibration Laboratory of FTS

Method Used

: By direct comparison the weight of dust particle trapped in a filter paper using high

volume sampler (TSP method) for a certain period, with the reading of the UUT. They

should be placed at the same location and powered on and off at the same time.

Calibration Results :

Reference concentration (mg/m³)	Total count for 1 hour	CPM (Count per minute)
0.1524	4051	67.52
0.1587	4132	68.87
0.1685	4262	71.03

Remarks:

1. The equipment being used in this calibration is traceable to recognized National Standards.

2. The interpolation equation : Concentration $(mg/m^3) = K \times [UUT reading (CPM)]$, where K = 0.002312

3. Correlation coefficient (r): 1.0000

Checked by :_ _Date: 6-12-2018 Certified by: & I Vount Date: 612-2018 CA-R-297 (22/07/2009) Leung Kwok Tai (Assistant Manager)

** End of Report **

MATERIALAB CONSULTANTS LIMITED

Room 723 & 725, 7/F, Block B,

Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong

Tel +852 2450 8238 Fax +852 2450 8032 E-mail : mcl@fugro.com Website : www.fugro.com

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Project: Contract No. NDO 14/2018 - Advance and First Stage Works of KTN and FNL New Development Areas

Location: FLN-DMS3

Date of Calibration: 15-Sep-19 Next Calibration Date: 15-Dec-19

Brand:

Tisch

Technician: Tony Wan

Model:

TE-5170

S/N: 3482

CONDITIONS

Sea Level Pressure (hPa):

1009.0

Corrected Pressure (mm Hg):

757

Temperature (°C):

29.2

Temperature (K):

302

CALIBRATION ORIFICE

Make:

Tisch

Qstd Slope:

2.13015

Model:

TE-5025A

Qstd Intercept:

-0.04186

Calibration Date:

17-Oct-18

Expiry Date:

17-Oct-19

S/N:

2154

CALIE	RATION
0-4-1	T .

and the second s	O MILITARY								
Plate No.	H2O (L)	H2O (R)	H2O	Qstd	1	IC		LINEAR	
riale No.	(in)	(in)	(in)	(m³/min)	(chart)	(corrected)	F	REGRESSION	
18	4.00	-8.10	12.100	1.638	51.00	50.54	Slope =	28.2944	
13	2.50	-7.00	9.500	1.453	46.00	45.58	Intercept =	4.4062	
10	1.40	-6.10	7.500	1.294	42.00	41.62	Corr. coeff.:	0.9984	
7	0.90	-5.40	6.300	1.187	38.00	37.66			
5	0.60	-4.20	4.800	1.039	34.00	33.69			

Calculations:

Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pa = actual pressure during calibration (mm Hg)

Tstd = 298 deg K

Pstd = 760 mm Hg

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

Lui Chi Yung

Project Consultant

Report Date: 15 - Sep - 2019

MATERIALAB CONSULTANTS LIMITED

Room 723 & 725, 7/F, Block B,

Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.

Tel Fax

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Project: Contract No. NDO 14/2018 - Advance and First Stage Works of KTN and FNL New Development Areas

Location: FLN-DMS1

Date of Calibration: 13-Sep-19

Next Calibration Date: 13-Dec-19

Brand:

Tisch

Technician: Tony Wan

Model:

TE-5170

S/N:

4037

CONDITIONS

Sea Level Pressure (hPa):

1009.0

Corrected Pressure (mm Hg):

757

Temperature (°C):

29.2

Temperature (K):

302

CALIBRATION ORIFICE

Make:

Tisch

Qstd Slope:

2.13015

Model:

TE-5025A

Qstd Intercept:

-0.04186

Calibration Date:

17-Oct-18

Expiry Date:

17-Oct-19

S/N:

2154

	CALIBRATION								
Plate No.	H2O (L)	H2O (R)	H2O	Qstd	I	IC		LINEAR	
Flate No.	(in)	(in)	(in)	(m³/min)	(chart)	(corrected)	F	REGRESSION	
18	6.20	-5.80	12.000	1.631	39.00	38.65	Slope =	32.5384	
13	4.90	-5.10	10.000	1.491	33.00	32.70	Intercept =	-15.3177	
10	3.80	-3.60	7.400	1.285	27.00	26.76	Corr. coeff.:	0.9922	
7	2.50	-2.70	5.200	1.080	18.00	17.84			
5	1.40	-1.60	3.000	0.825	13.00	12.88			

Calculations:

Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pa = actual pressure during calibration (mm Hg)

Tstd = 298 deg K

Pstd = 760 mm Hg

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

FLOW RATE CHART 45.00 40.00 35.00 Actual Chart Response (IC) 30.00 25.00 20.00 15.00 10.00 5.00 0.00 0.000 0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)

Lui Chi Yung

Project Consultant

Report Date: 14 - Sep - 2018

RECALIBRATION **DUE DATE:**

October 17, 2019

ertificate d dibration

Calibration Certification Information

Cal. Date: October 17, 2018 Rootsmeter S/N: 438320

Ta: 294

°K

Operator: Jim Tisch Pa: 755.7

mm Hg

Calibration Model #: TE-5025A

Calibrator S/N: 2154

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.4590	3.2	2.00
2	3	4	1	1.0410	6.4	4.00
3	5	6	1	0.9310	7.9	5.00
4	7	8	1	0.8840	8.8	5.50
5	9	10	1	0.7320	12.7	8.00

	Data Tabulation					
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$		Qa	$\sqrt{\Delta H(Ta/Pa)}$	
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)	
1.0035	0.6878	1.4197	0.9958	0.6825	0.8821	
0.9993	0.9599	2.0078	0.9915	0.9525	1.2475	
0.9973	1.0712	2.2448	0.9895	1.0629	1.3948	
0.9961	1.1268	2.3543	0.9884	1.1180	1.4628	
0.9909	1.3536	2.8394	0.9832	1.3432	1.7642	
	m=	2.13015		m=	1.33386	
QSTD[b=	-0.04186	QA	b=	-0.02601	
	r=	0.99996	- · ·	r=	0.99996	

	Calculation	ıs	
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)
Qstd=	Vstd/ΔTime	Qa=	Va/ΔTime
	For subsequent flow rat	e calculatio	ns:
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$	Qa=	$1/m\left(\left(\sqrt{\Delta H(Ta/Pa)}\right)-b\right)$

	Standard Conditions
Tstd:	298.15 °K
Pstd:	760 mm Hg
	Key
ΔH: calibrato	r manometer reading (in H2O)
	er manometer reading (mm Hg)
	solute temperature (°K)
Pa: actual ba	rometric pressure (mm Hg)
b: intercept	
m: slope	

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

sch Environmental, Inc.

15 South Miami Avenue

llage of Cleves, OH 45002

www.tisch-env.com

TOLL FREE: (877)263-7610

FAX: (513)467-9009

D. PHOTOS OF AIR QUALITY MONITORING LOCATIONS

Monitoring Location No.: KTN-DMS1 Description: Nursery Classes and Kindergartens; Post Office (Planned)

Monitoring Location No.: KTN-DMS2
Description: Nursery Classes and Kindergartens (2 nos); District Elderly Community Centre (Planned)

Monitoring Location No.: KTN-DMS3 Description: Village Resite (Planned)

Monitoring Location No.: KTN-DMS4
Description: Temporary Structure near Fanling Highway (near Pak Shek Au)

Monitoring Location No.: FLN-DMS1 Description: Scattered Village Houses North of Proposed Potential Ecopark

Monitoring Location No.: FLN-DMS2
Description: Residential Buildings, Nursery Classes and Kindergartens, Neighborhood Elderly Community Centre, Residential Home for the Elderly, Post Office (Planned)

Monitoring Location No.: FLN-DMS3 Description: House near Tong Hang

Monitoring Location No.: FLN-DMS4 Description: Village Resite

Monitoring Location No.: FLN-DMS5 Description: Noble Hill

E. WEATHER AND METEROLOGICAL CONDITIONS DURING BASELINE MONITORING PERIOD

Dete	Mean	Air Temperature				Mean Relative	Total
Date	Pressure (hPa)	Maximum (deg. C)	Mean (deg. C)	Minimum (deg. C)	Humidity (%)	Rainfall (mm)	
		-	September 2019	9	<u>-</u>		
17	1009.0	31.8	29.2	27.9	76	2.1	
18	1010.9	32.0	28.8	25.8	79	18	
19	1011.3	32.4	28.0	24.9	74	8.7	
20	1008.7	32.6	29.0	26.2	52	0	
21	1008.0	32.5	29.2	26.5	42	0	
22	1012.2	31.3	28.3	25.9	40	0	
23	1016.2	30.7	27.7	25.4	57	0	
24	1017.5	30.3	27.5	26.3	70	0	
25	1017.3	30.8	27.3	25.7	71	Trace	
26	1017.2	30.8	27.5	25.5	71	0	
27	1016.6	30.6	27.6	25.7	72	Trace	
28	1015.0	32.2	28.2	25.9	71	0	
29	1012.8	31.7	28.7	26.6	75	0	
30	1008.8	33.4	30.1	27.2	64	0	
			October 2019				
01	1009.4	33.2	30.3	28.4	21.2	0	

Source: Hong Kong Observatory -- Hong Kong Observatory

Dete	Mean	Air Temperature			Mean Relative	Total	
Date	Pressure (hPa)	Maximum (deg. C)	Mean (deg. C)	Minimum (deg. C)	Humidity (%)	Rainfall (mm)	
	-	-	October 2020	-			
19	1015.9	27.9	24.6	22.3	70	0	
20	1015	29	25	22.1	68	0	
21	1011.8	28.4	24.5	21.7	63	0	
22	1009.4	28.3	24.7	22.8	60	0	
23	1011.4	24.8	23.5	21.9	51	0	
24	1013.9	26.3	23.8	22.3	55	Trace	
25	1014.8	28.1	24.2	23	69	0	
26	1013.5	28.1	24.6	22.8	76	0	
27	1012.9	28.6	25.1	22.9	73	0	
28	1014.9	26.7	24.4	22.6	78	4.7	
29	1017.3	26.7	24.7	22.6	74	0.1	
30	1018.3	27	24.4	23.2	78	Trace	
31	1017.7	26	23.4	22	71	0	
	November 2020						
01	1015.9	27.8	24.0	21.9	72	0	

Source: Hong Kong Observatory – Hong Kong Observatory

F. BASELINE AIR QUALITY MONITORING DATA

KTN-DMS1					
Serial No. 892185					
Date	1 st	2 nd	3 rd		
17/9/2019	83	37	68		
18/9/2019	59	61	68		
19/9/2019	46	50	46		
20/9/2019	26	35	35		
21/9/2019	26	28	30		
22/9/2019	26	28	30		
23/9/2019	28	31	24		
24/9/2019	39	35	44		
25/9/2019	72	89	70		
26/9/2019	46	46	50		
27/9/2019	96	113	109		
28/9/2019	89	85	78		
29/9/2019	163	154	192		
30/9/2019	87	81	80		

KTN-DMS2				
Serial No. 882147				
Date	1 st	2 nd	3 rd	
17/9/2019	15	12	6	
18/9/2019	35	2	2	
19/9/2019	17	17	21	
20/9/2019	27	29	29	
21/9/2019	33	35	35	
22/9/2019	56	58	62	
23/9/2019	50	54	54	
24/9/2019	106	112	106	
25/9/2019	112	48	35	
26/9/2019	139	118	114	
27/9/2019	139	118	114	
28/9/2019	77	81	73	
29/9/2019	93	83	75	
30/9/2019	66	69	68	

KTN-DMS3					
Serial No. 761106					
Date	1 st	2 nd	3 rd		
17/9/2019	78	109	442		
18/9/2019	74	59	55		
19/9/2019	41	31	33		
20/9/2019	6	11	6		
21/9/2019	15	15	15		
22/9/2019	26	24	24		
23/9/2019	31	26	24		
24/9/2019	33	30	24		
25/9/2019	55	50	57		
26/9/2019	43	46	44		
27/9/2019	109	109	104		
28/9/2019	72	63	52		
29/9/2019	115	117	111		
30/9/2019	96	72	68		

KTN-DMS4						
Serial No. 882146						
Date	1 st	2 nd	3 rd			
17/9/2019	91	87	111			
18/9/2019	79	77	72			
19/9/2019	60	59	53			
20/9/2019	32	43	40			
21/9/2019	38	49	40			
22/9/2019	32	38	42			
23/9/2019	38	38	36			
24/9/2019	43	42	38			
25/9/2019	77	76	76			
26/9/2019	13	15	26			
27/9/2019	125	161	145			
28/9/2019	127	96	85			
29/9/2019	187	130	138			
30/9/2019	106	106	98			

FLN-DMS1					
Serial No. 892186					
Date	1 st	2 nd	3 rd		
18/9/2019	86	79	83		
19/9/2019	92	105	101		
20/9/2019	86	81	81		
21/9/2019	92	99	97		
22/9/2019	112	108	92		
23/9/2019	83	86	83		
24/9/2019	81	77	79		
25/9/2019	61	68	70		
26/9/2019	72	70	72		
27/9/2019	75	77	75		
28/9/2019	83	81	81		
29/9/2019	77	79	70		
30/9/2019	75	72	75		
1/10/2019	79	81	77		

FLN-DMS2					
Serial No. 620407					
Date	1 st	2 nd	3 rd		
17/9/2019	278	161	139		
18/9/2019	55	55	73		
19/9/2019	35	42	53		
20/9/2019	33	24	33		
21/9/2019	29	27	29		
22/9/2019	22	24	26		
23/9/2019	24	24	24		
24/9/2019	22	24	26		
25/9/2019	22	20	26		
26/9/2019	37	40	44		
27/9/2019	84	69	51		
28/9/2019	102	106	108		
29/9/2019	51	48	49		
30/9/2019	62	66	59		

F	LN-DMS3		
Serial No. 892187			
Date	1 st	2 nd	3 rd
17/9/2019	83	81	86
18/9/2019	81	86	79
19/9/2019	74	76	69
20/9/2019	72	74	72
21/9/2019	79	81	79
22/9/2019	88	86	83
23/9/2019	72	69	69
24/9/2019	74	76	74
25/9/2019	79	81	72
26/9/2019	74	76	76
27/9/2019	79	74	72
28/9/2019	74	76	76
29/9/2019	79	81	79
30/9/2019	79	83	83

F	LN-DMS4		
Serial No. 882149			
Date	1 st	2 nd	3 rd
19/10/2020	45	46	42
20/10/2020	40	38	36
21/10/2020	22	23	14
22/10/2020	22	23	24
23/10/2020	15	16	12
24/10/2020	18	22	24
25/10/2020	39	41	38
26/10/2020	40	42	38
27/10/2020	42	31	40
28/10/2020	8	12	11
29/10/2020	21	27	30
30/10/2020	36	42	35
31/10/2020	64	43	30
1/11/2020	30	30	34

F	LN-DMS5		
Serial No. 882147			
Date	1 st	2 nd	3 rd
19/10/2020	38	72	55
20/10/2020	45	36	45
21/10/2020	23	28	26
22/10/2020	53	55	52
23/10/2020	37	34	39
24/10/2020	53	55	52
25/10/2020	56	53	48
26/10/2020	56	48	46
27/10/2020	18	19	18
28/10/2020	13	13	8
29/10/2020	40	39	38
30/10/2020	57	73	54
31/10/2020	92	77	49
1/11/2020	53	45	53

24 HR	Dust	WIOIIIC	Ulling				N DNACO							
					(1	۱۱ Direct Rea	N-DMS2							
Serial No.	620407				,,,	JII CCC NCC	iding Dus	t Wicter)						
	17/9	18/9	19/9	20/9	21/9	22/9	23/9	24/9	25/9	26/9	27/9	28/9	29/9	30/9
	320	63	40	38	34	25	27	25	25	42	97	118	59	72
	185	63	48	27	32	27	27	27	23	46	80	122	55	76
	160	84	61	38	34	29	27	29	29	51	59	124	57	67
	150	84	88	44	40	32	27	32	32	42	76	116	57	74
	135	93	84	38	46	29	32	29	32	44	82	126	51	72
	150	97	86	53	48	27	27	27	25	48	82	105	53	76
	225	97	110	63	51	32	32	32	13	55	101	103	55	82
	185	72	122	65	48	48	53	48	51	61	139	101	63	84
	177	65	120	74	57	65	55	65	55	61	135	105	74	124
	139	86	116	69	69	48	59	48	61	63	133	107	80	118
	116	84	122	74	59	42	55	42	55	74	110	124	72	131
	133	59	141	78	36	44	55	36	51	78	116	116	74	135
	143	76	141	72	29	55	63	29	51	67	105	93	97	126
	145	82	152	63	25	57	63	25	40	67	114	88	63	139
	131	88	171	65	25	63	61	25	32	65	105	101	61	118
	187	95	177	63	34	61	57	34	34	51	122	116	53	110
	141	95	177	57	29	44	63	29	36	48	164	120	59	84
	112	88	65	53	32	34	59	32	38	44	166	114	55	67
	105	78	42	38	29	32	65	34	38	40	171	120	48	69
	101	67	42	29	27	48	59	38	32	36	118	86	44	74
	99	59	51	32	32	46	80	29	29	36	116	84	42	67
	103	55	36	110	27	48	48	34	27	34	40	82	25	72
	101	59	38	34	36	48	53	36	32	34	42	84	38	69
	99	59	40	38	34	51	59	40	34	36	44	80	36	76
Average	148	77	95	55	38	43	50	34	36	51	105	106	57	91

						F	N-DMS4							
					(Direct Rea	ading Dust	Meter)						
Serial No	. 882149													
	19/10	20/10	21/10	22/10	23/10	24/10	25/10	26/10	27/10	28/10	29/10	30/10	31/10	1/11
	34	41	16	15	17	21	33	30	32	12	27	36	64	33
	40	39	23	17	14	17	36	32	30	9	21	42	43	31
	43	37	11	18	13	19	35	40	26	6	27	35	30	21
	36	39	13	19	13	18	38	42	31	8	30	32	34	24
	29	40	13	19	18	18	34	38	40	12	18	27	32	23
	31	36	14	14	12	22	27	31	35	11	18	41	33	29
	32	45	14	15	9	24	39	29	36	7	21	39	29	26
	25	34	12	22	11	16	41	36	42	7	21	29	28	30
	33	33	20	23	15	16	38	37	31	7	20	30	25	27
	35	29	18	24	16	18	25	38	40	8	14	30	23	23
	29	31	14	22	12	20	22	25	38	8	11	35	22	33
	35	25	22	22	15	22	22	23	39	10	12	35	21	30
	45	40	23	18	10	19	46	46	38	9	10	34	23	30
	46	38	14	14	10	19	41	46	33	8	13	26	24	34
	42	36	21	15	14	24	46	33	34	11	15	22	26	28
	45	40	11	13	12	20	38	30	34	10	16	32	26	27
	42	37	17	11	13	18	25	41	36	8	16	23	28	22
	34	32	21	12	13	18	37	46	32	11	11	23	34	26
	29	28	11	12	14	22	36	32	30	12	19	33	28	30
	32	26	12	20	15	16	34	28	34	9	11	23	25	34
	34	34	24	21	20	11	33	30	35	9	13	44	29	30

	28	27	16	17	17	13	34	29	28	9	13	25	28	22
	24	33	15	18	11	10	40	23	37	11	12	40	32	33
	27	29	14	17	13	10	37	32	41	10	23	25	29	27
Average	35	35	16	17	14	18	35	34	35	9	17	32	30	28

						FI	LN-DMS5							
					(Direct Rea	ading Dust	Meter)						
Serial No.	882147													
	19/10	20/10	21/10	22/10	23/10	24/10	25/10	26/10	27/10	28/10	29/10	30/10	31/10	1/11
	39	45	19	57	25	57	56	51	14	9	25	38	92	39
	48	36	17	50	28	50	46	45	12	8	28	38	77	46
	38	45	21	39	34	39	56	49	11	13	25	57	49	45
	72	24	21	42	33	42	53	51	11	13	20	73	51	48
	55	22	21	48	37	48	48	44	10	8	26	54	43	42
	32	46	21	55	29	55	52	45	12	7	28	44	54	50
	25	33	23	56	26	56	48	56	12	8	29	48	57	44
	33	25	24	47	25	47	44	48	13	8	31	48	50	53
	32	42	20	47	30	47	44	46	14	8	34	49	44	45
	28	31	23	32	31	32	53	42	16	7	28	44	40	53
	34	36	28	41	37	41	53	42	17	6	31	51	43	38
	28	32	26	47	34	47	52	52	17	5	36	47	41	41
	26	25	22	43	39	43	54	49	18	8	40	56	46	45
	38	28	19	53	36	53	47	56	19	7	39	40	49	54
	40	29	21	55	28	55	51	42	18	7	38	54	56	39
	44	34	21	52	28	52	41	49	16	5	29	49	48	48
	34	31	25	48	26	48	51	45	15	5	28	52	45	52
	29	46	26	49	24	49	45	56	17	4	34	46	56	38
	27	39	21	36	24	36	46	47	12	12	26	42	51	53
	34	41	21	38	35	38	48	51	17	9	29	39	42	54
	28	27	24	42	40	42	54	42	11	7	38	42	51	51
	32	41	20	50	42	50	56	45	15	4	28	48	53	44
	22	47	21	51	33	51	48	41	14	5	36	48	42	54
	24	30	19	43	38	43	44	52	12	12	38	53	39	44
Average	35	35	22	47	32	47	50	48	14	8	31	48	51	47

						KTN.	DMS1							
					(Dire	ct Readi		Meter)						
Serial No. 89	2185													
	17/9	18/9	19/9	20/9	21/9	22/9	23/9	24/9	25/9	26/9	27/9	28/9	29/9	30/9
	85	60	47	26	26	26	28	40	74	47	98	91	166	89
	38	62	51	36	28	28	32	36	91	47	115	87	157	83
	70	70	47	36	30	30	25	45	72	51	111	79	196	81
	60	68	41	26	32	32	30	36	136	43	104	106	115	74
	77	75	45	28	47	47	32	36	104	45	121	102	115	83
	100	62	43	26	66	66	30	41	60	115	91	113	89	91
	115	75	62	23	34	34	34	60	47	81	74	117	89	128
	141	64	72	30	38	38	38	47	62	47	72	128	102	157
	151	62	70	38	28	28	28	57	60	51	85	121	124	151
	192	64	77	77	38	38	38	43	53	43	96	124	241	145
	191	60	91	98	34	34	49	62	64	58	111	115	247	155
	207	60	92	75	28	28	60	70	53	75	104	117	279	164
	194	72	96	94	34	34	49	83	49	70	83	119	302	183
	204	72	115	106	38	38	57	102	72	85	75	113	364	192
	168	72	121	62	47	47	57	96	75	96	91	111	330	191

181 70 132 92 51 51 57 117 83 94 104 102 300 187 185 68 155 132 57 57 51 89 64 79 108 100 323 194 160 47 147 124 45 45 41 60 55 207 102 98 358 204 166 38 124 85 36 36 49 51 51 145 108 92 360 140 162 41 128 34 28 28 53 49 64 89 77 87 362 109 113 45 85 21 17 17 41 43 53 60 68 91 379 100 102 47 28 21 17 17 38 45 60 68 94 66 298 100 106 49 91 23 19 17 41 47 62 68 98 68 300 106 106 47 92 25 21				U											
160 47 147 124 45 45 41 60 55 207 102 98 358 204 166 38 124 85 36 36 49 51 51 145 108 92 360 140 162 41 128 34 28 28 53 49 64 89 77 87 362 109 113 45 85 21 17 17 41 43 53 60 68 91 379 100 102 47 28 21 17 17 38 45 60 68 94 66 298 100 106 49 91 23 19 17 41 47 62 68 98 68 300 106 106 47 92 25 21 19 40 49 64 70 96 70 315 102		181	70	132	92	51	51	57	117	83	94	104	102	300	187
166 38 124 85 36 36 49 51 51 145 108 92 360 140 162 41 128 34 28 28 53 49 64 89 77 87 362 109 113 45 85 21 17 17 41 43 53 60 68 91 379 100 102 47 28 21 17 17 38 45 60 68 94 66 298 100 106 49 91 23 19 17 41 47 62 68 98 68 300 106 106 47 92 25 21 19 40 49 64 70 96 70 315 102		185	68	155	132	57	57	51	89	64	79	108	100	323	194
162 41 128 34 28 28 53 49 64 89 77 87 362 109 113 45 85 21 17 17 41 43 53 60 68 91 379 100 102 47 28 21 17 17 38 45 60 68 94 66 298 100 106 49 91 23 19 17 41 47 62 68 98 68 300 106 106 47 92 25 21 19 40 49 64 70 96 70 315 102		160	47	147	124	45	45	41	60	55	207	102	98	358	204
113		166	38	124	85	36	36	49	51	51	145	108	92	360	140
102 47 28 21 17 17 38 45 60 68 94 66 298 100 106 49 91 23 19 17 41 47 62 68 98 68 300 106 106 47 92 25 21 19 40 49 64 70 96 70 315 102		162	41	128	34	28	28	53	49	64	89	77	87	362	109
106 49 91 23 19 17 41 47 62 68 98 68 300 106 106 47 92 25 21 19 40 49 64 70 96 70 315 102		113	45	85	21	17	17	41	43	53	60	68	91	379	100
106 47 92 25 21 19 40 49 64 70 96 70 315 102		102	47	28	21	17	17	38	45	60	68	94	66	298	100
		106	49	91	23	19	17	41	47	62	68	98	68	300	106
Average 136 61 86 56 35 35 42 59 68 77 95 101 246 134		106	47	92	25	21	19	40	49	64	70	96	70	315	102
	Average	136	61	86	56	35	35	42	59	68	77	95	101	246	134

					/Dire	KTN-	DMS2	Motor)						
Serial No. 882	2147				(Dire	ct Neaun	ilg Dust i	vietei j						
	17/9	18/9	19/9	20/9	21/9	22/9	23/9	24/9	25/9	26/9	27/9	28/9	29/9	30/9
	15	35	17	27	33	56	50	106	112	139	139	77	93	66
	12	2	17	29	35	58	54	112	48	118	118	81	83	69
	6	2	21	29	35	62	54	106	35	114	114	73	75	68
	2	2	17	29	31	156	52	93	27	110	110	71	68	83
	4	2	23	31	33	79	48	87	35	120	120	77	58	114
	6	6	23	35	44	54	75	71	50	87	87	95	62	85
	73	6	23	35	54	42	83	62	44	104	297	112	75	100
	37	8	17	35	50	48	64	123	58	224	224	122	139	108
	31	12	14	33	54	46	69	135	79	116	116	123	174	120
	33	14	8	42	46	48	60	122	77	268	268	123	127	137
	50	19	21	42	50	46	64	98	73	297	297	125	137	149
	56	33	19	46	58	50	69	89	52	322	322	125	147	150
	46	27	23	44	68	50	66	68	27	403	403	131	150	143
	54	25	21	44	75	60	79	73	17	577	577	152	147	123
	50	10	23	41	79	60	71	81	23	903	903	145	131	123
	66	4	35	39	83	50	66	98	27	413	413	156	129	125
	81	10	29	50	71	48	77	89	33	503	503	156	133	127
	85	12	25	44	71	52	149	73	27	951	951	152	147	135
	64	12	29	41	58	44	162	68	23	500	500	160	156	110
	71	10	21	42	56	50	95	66	29	511	511	133	152	58
	60	27	15	56	71	69	95	62	122	532	532	100	95	48
	62	29	15	62	60	77	110	64	106	451	451	98	73	69
	62	31	17	60	58	81	108	66	102	457	473	100	75	71
	58	33	15	54	54	83	110	64	104	529	457	102	81	66
Average	45	15	20	41	55	61	80	86	55	365	370	116	113	102

					/D:		N-DMS3	+ \ 1 a + a = \						
Serial No	o. 761106				(1)	rect kea	ding Dus	t ivieter)						
oc.ia.iii														
	17/9	18/9	19/9	20/9	21/9	22/9	23/9	24/9	25/9	26/9	27/9	28/9	29/9	30/9
	87	83	46	6	17	29	35	37	62	48	122	81	128	108
	122	66	35	12	17	27	29	33	56	52	122	70	130	81
	495	62	37	6	17	27	27	27	64	50	116	58	124	77
	418	56	37	8	19	23	29	31	116	54	112	68	108	70
	665	70	43	2	27	23	31	37	58	46	83	70	91	108
	712	77	68	4	25	25	33	48	52	50	72	83	77	130
	739	81	72	8	27	37	33	43	54	43	64	64	106	108
	822	85	77	23	23	33	43	43	58	68	93	77	106	93
	698	79	83	27	27	37	43	41	54	48	95	72	141	135

313 54 104 29 35 33 48 41 56 58 75 41 228 1 286 68 124 29 31 35 52 50 60 58 70 48 261 1 263 58 137 27 8 37 46 56 64 58 72 50 228 1 230 35 159 27 4 37 54 72 64 62 83 58 226 1 226 48 155 21 8 37 52 68 62 70 120 50 205 1 220 52 157 21 14 41 52 68 68 60 124 54 207 1 186 52 139 19 14 37 54 64 56 75 151 50 207 1 172 64 147 23 17 25				•	•										
286 68 124 29 31 35 52 50 60 58 70 48 261 1 263 58 137 27 8 37 46 56 64 58 72 50 228 1 230 35 159 27 4 37 54 72 64 62 83 58 226 1 226 48 155 21 8 37 52 68 62 70 120 50 205 1 220 52 157 21 14 41 52 68 68 60 124 54 207 1 186 52 139 19 14 37 54 64 56 75 151 50 207 1 172 64 147 23 17 25 64 60 64 81 104		462	41	85	33	27	29	43	43	56	50	108	52	178	128
263 58 137 27 8 37 46 56 64 58 72 50 228 1 230 35 159 27 4 37 54 72 64 62 83 58 226 1 226 48 155 21 8 37 52 68 62 70 120 50 205 1 220 52 157 21 14 41 52 68 68 60 124 54 207 1 186 52 139 19 14 37 54 64 56 75 151 50 207 1 172 64 147 23 17 25 64 60 64 81 104 41 213 1 170 79 145 23 12 23 72 66 58 85 108 50 336 1 99 68 35 10 8 23		313	54	104	29	35	33	48	41	56	58	75	41	228	116
230 35 159 27 4 37 54 72 64 62 83 58 226 1 226 48 155 21 8 37 52 68 62 70 120 50 205 1 220 52 157 21 14 41 52 68 68 60 124 54 207 1 186 52 139 19 14 37 54 64 56 75 151 50 207 1 172 64 147 23 17 25 64 60 64 81 104 41 213 1 170 79 145 23 12 23 72 66 58 85 108 50 336 1 99 68 35 10 8 23 68 48 58 91 85 75 307 1 108 62 33 6 2 25 64 43 62 79 95 101 313 1 112 56 27 2 4 25 46		286	68	124	29	31	35	52	50	60	58	70	48	261	114
226 48 155 21 8 37 52 68 62 70 120 50 205 1 220 52 157 21 14 41 52 68 68 60 124 54 207 1 186 52 139 19 14 37 54 64 56 75 151 50 207 1 172 64 147 23 17 25 64 60 64 81 104 41 213 1 170 79 145 23 12 23 72 66 58 85 108 50 336 1 99 68 35 10 8 23 68 48 58 91 85 75 307 1 108 62 33 6 2 25 64 43 62 79 95 101 313 1 112 56 27 2 4 25 46 41 48 39 137 137 327 1		263	58	137	27	8	37	46	56	64	58	72	50	228	130
220 52 157 21 14 41 52 68 68 60 124 54 207 1 186 52 139 19 14 37 54 64 56 75 151 50 207 1 172 64 147 23 17 25 64 60 64 81 104 41 213 1 170 79 145 23 12 23 72 66 58 85 108 50 336 1 99 68 35 10 8 23 68 48 58 91 85 75 307 1 108 62 33 6 2 25 64 43 62 79 95 101 313 1 112 56 27 2 4 25 46 41 48 39 137 137 327 1		230	35	159	27	4	37	54	72	64	62	83	58	226	145
186 52 139 19 14 37 54 64 56 75 151 50 207 1 172 64 147 23 17 25 64 60 64 81 104 41 213 1 170 79 145 23 12 23 72 66 58 85 108 50 336 1 99 68 35 10 8 23 68 48 58 91 85 75 307 1 108 62 33 6 2 25 64 43 62 79 95 101 313 1 112 56 27 2 4 25 46 41 48 39 137 137 327 1		226	48	155	21	8	37	52	68	62	70	120	50	205	149
172 64 147 23 17 25 64 60 64 81 104 41 213 1 170 79 145 23 12 23 72 66 58 85 108 50 336 1 99 68 35 10 8 23 68 48 58 91 85 75 307 1 108 62 33 6 2 25 64 43 62 79 95 101 313 1 112 56 27 2 4 25 46 41 48 39 137 137 327 1		220	52	157	21	14	41	52	68	68	60	124	54	207	174
170 79 145 23 12 23 72 66 58 85 108 50 336 1 99 68 35 10 8 23 68 48 58 91 85 75 307 1 108 62 33 6 2 25 64 43 62 79 95 101 313 1 112 56 27 2 4 25 46 41 48 39 137 137 327 1		186	52	139	19	14	37	54	64	56	75	151	50	207	174
99 68 35 10 8 23 68 48 58 91 85 75 307 1 108 62 33 6 2 25 64 43 62 79 95 101 313 1 112 56 27 2 4 25 46 41 48 39 137 137 327 1		172	64	147	23	17	25	64	60	64	81	104	41	213	180
108 62 33 6 2 25 64 43 62 79 95 101 313 1 112 56 27 2 4 25 46 41 48 39 137 137 327 1		170	79	145	23	12	23	72	66	58	85	108	50	336	133
112 56 27 2 4 25 46 41 48 39 137 137 327 1		99	68	35	10	8	23	68	48	58	91	85	75	307	110
		108	62	33	6	2	25	64	43	62	79	95	101	313	106
110 60 33 17 6 25 54 46 50 43 120 139 329 1		112	56	27	2	4	25	46	41	48	39	137	137	327	110
		110	60	33	17	6	25	54	46	50	43	120	139	329	112
108 64 29 10 6 27 52 43 52 48 116 143 319 1		108	64	29	10	6	27	52	43	52	48	116	143	319	116
Average 326 63 84 16 16 30 47 48 60 59 102 72 204 1	Average	326	63	84	16	16	30	47	48	60	59	102	72	204	121

	KTN-DMS4													
(Direct Reading Dust Meter) Serial No. 882146														
	17/9	18/9	19/9	20/9	21/9	22/9	23/9	24/9	25/9	26/9	27/9	28/9	29/9	30/9
	85	74	56	30	35	30	35	41	72	12	116	118	174	99
	81	72	55	41	46	35	35	39	70	14	150	90	122	99
	104	67	49	37	37	39	33	35	70	25	136	79	129	92
	106	85	48	30	39	39	37	37	99	16	120	69	120	76
	120	62	48	23	42	39	39	39	150	19	122	70	109	81
	118	67	42	21	44	35	44	42	58	32	100	86	95	86
	141	83	55	26	42	32	69	44	62	32	86	81	85	86
	150	79	78	33	39	30	41	49	58	30	97	95	104	107
	159	67	72	32	41	39	67	49	60	58	111	146	139	136
	178	81	76	42	42	49	67	44	58	85	100	132	224	137
	218	70	90	46	48	49	51	49	69	113	194	104	226	139
	201	81	93	46	49	39	55	55	65	56	150	102	307	148
	204	63	99	53	53	39	60	58	69	44	115	60	335	157
	106	79	116	46	51	41	60	65	74	49	125	86	351	166
	245	62	107	41	26	42	46	65	72	42	113	74	329	153
	271	76	107	55	25	85	48	69	74	51	134	65	419	155
	294	78	111	55	30	46	58	74	69	67	141	83	423	192
	368	95	130	55	26	46	63	63	69	92	176	100	375	203
	109	93	116	55	25	48	70	56	83	100	166	86	456	176
	113	88	136	33	26	39	79	65	81	111	174	93	483	134
	106	93	92	25	28	28	74	76	90	92	174	123	515	106
	92	67	33	35	19	33	63	69	78	78	190	136	493	113
	93	72	99	39	28	35	65	70	74	79	192	137	478	115
	99	74	102	41	30	37	67	70	76	78	189	137	483	116
Average	157	76	84	39	36	41	55	55	75	57	140	98	291	128
Average	137	,,	04	33	30	71	33	33	,,	3,	140	50	231	120

24 HR Dust Monitoring									
Direct Reading Dust Meter Result									
(Average)									
Date		Location							
	FLN-DMS2	KTN-DMS1	KTN-DMS2	KTN-DMS3	KTN-DMS4				
	(Serial No. 620407)	(Serial No. 892185)	(Serial No. 882147)	(Serial No. 761106)	(Serial No. 882146)				
17/9	148	136	45	326	157				
18/9	77	61	15	63	76				
19/9	95	86	20	84	84				
20/9	55	56	41	16	39				
21/9	38	35	55	16	36				
22/9	43	35	61	30	41				
23/9	50	42	80	47	55				
24/9	34	59	86	48	55				
25/9	36	68	55	60	75				
26/9	51	77	365	59	57				
27/9	105	95	370	102	140				
28/9	106	101	116	72	98				
29/9	57	246	113	204	291				
30/9	91	134	102	121	128				

Direct Reading Dust Meter Result						
(Average)						
Date	Location					
	FLN-DMS4	FLN-DMS5				
	(Serial No. 882149)	(Serial No. 882147)				
19/10	35	35				
20/10	35	35				
21/10	16	22				
22/10	17	47				
23/10	14	32				
24/10	18	47				
25/10	35	50				
26/10	34	48				
27/10	35	14				
28/10	9	8				
29/10	17	31				
30/10	32	48				
31/10	30	51				
1/11	28	47				

		FLN-DMS1 (High Volume Sa	ampler)				
Serial No. 4037							
Date	Filter Paper ID	Initial Weight (g)	Final Weight (g)	Concentration (ug/m3)			
18/09/19	M4065	2.732	2.819	29			
19/09/19	M4058	2.746	2.799	25			
20/09/19	M4060	2.724	2.783	31			
21/09/19	M4063	2.741	2.802	32			
22/09/19	M4000	2.769	2.813	18			
23/09/19	M4015	2.750	2.820	30			
24/09/19	M4016	2.755	2.805	18			
25/09/19	M4276	2.652	2.743	35			
26/09/19	M3765	2.757	2.854	37			
27/09/19	M4253	2.651	2.783	51			
28/09/19	M4254	2.667	2.763	38			
29/09/19	M4255	2.658	2.737	32			
30/09/19	M4257	2.646	2.722	22			
01/10/19	M4259	2.648	2.740	27			

FLN-DMS3 (High Volume Sampler)							
Serial No. 3482							
Date	Filter Paper ID	Initial Weight (g)	Final Weight (g)	Concentration (ug/m3)			
17/09/19	M3972	2.767	2.839	52			
18/09/19	M4064	2.732	2.800	32			
19/09/19	M4057	2.736	2.811	51			
20/09/19	M4059	2.740	2.829	50			
21/09/19	M4061	2.724	2.834	45			
22/09/19	M3999	2.757	2.835	49			
23/09/19	M4019	2.749	2.823	43			
24/09/19	M4017	2.743	2.798	30			
25/09/19	M4275	2.667	2.772	83			
26/09/19	M3766	2.732	2.811	44			
27/09/19	M4018	2.734	2.874	87			
28/09/19	M4062	2.741	2.831	55			
29/09/19	M4256	2.643	2.797	90			
30/09/19	M4258	2.643	2.704	44			

G. OBSERVATION OF AIR QUALITY INFLUENCTING FACTOR

